
FICHE D'INFORMATION TECHNIQUE

TECHNOLOGIE MEMBRANAIRE ZeeWeed® 500 (ZW-500) AVEC COAGULATION

Domaine d'application : *Eau potable* Niveau de la fiche : *En validation à l'échelle réelle*

Date d'édition : 2023-08-09 Date d'expiration : 2025-11-30

Fiche d'information technique : FTEP-VWS-PRFM-05EV

MANDAT DU BNQ

Depuis le 1^{er} janvier 2014, la coordination des activités du Comité sur les technologies de traitement en eau potable (CTTEP) est assumée par le Bureau de normalisation du Québec (BNQ). Le BNQ est ainsi mandaté par le gouvernement du Québec pour être l'administrateur de la procédure suivante :

 Procédure de validation de la performance des technologies de traitement en eau potable, MELCCFP, mars 2021.

Cette procédure, qui est la propriété du gouvernement du Québec, peut être consultée dans le site Web du ministère de l'Environnement et de la Lutte contre les changements climatiques (MELCCFP) à l'adresse suivante :

http://www.environnement.gouv.qc.ca/eau/potable/guide/CTTEP_ProcedureAnalyseEauPotable.pdf

Les procédures du BNQ, qui décrivent la marche à suivre pour la validation de la performance d'une technologie en vue de la diffusion d'une fiche d'information technique par le gouvernement du Québec, sont décrites dans les documents suivants :

- BNQ 9922-200 Technologies de traitement de l'eau potable et des eaux usées d'origine domestique
 Validation de la performance Procédure administrative, BNQ, mars 2021;
- BNQ 9922-201 Technologies de traitement de l'eau potable et des eaux usées d'origine domestique
 Reconnaissance des compétences des experts externes pour l'analyse des demandes de validation de la performance des technologies de traitement, BNQ, octobre 2020.

Ces procédures, dont le BNQ est responsable, peuvent être téléchargées à partir du site Web du BNQ au lien suivant :

Validation des technologies de traitement de l'eau

Cadre juridique régissant l'installation de la technologie

L'installation d'équipements de traitement en eau potable doit faire l'objet d'une autorisation préalable du ministre de l'Environnement et de la Lutte contre les changements climatiques en vertu de la Loi sur la qualité de l'environnement (LQE) et des règlements qui en découlent.

La présente fiche d'information technique ne constitue pas une certification ou une autre forme d'accréditation. L'entreprise demeure responsable de l'information fournie, et les vérifications effectuées par le CTTEP ne dégagent en rien l'ingénieur concepteur et l'entreprise de fabrication ou de distribution de leurs obligations, garanties et responsabilités. L'expert externe, le BNQ, le CTTEP et les ministères du gouvernement du Québec ne peuvent être tenus responsables de la contreperformance d'un système de traitement en eau potable conçu en fonction des renseignements contenus dans la présente fiche d'information technique. En outre, cette fiche d'information technique pourra être révisée à la suite de l'obtention d'autres résultats.

Documents d'information publiés par :

le MELCCFP.

ZeeWeed® 500 (ZW-500) avec coagulation

DATE DE RÉVISION	Овјет	VERSION DE LA PROCÉDURE DE VALIDATION DE PERFORMANCE DU MELCC	VERSION DE LA PROCÉDURE ADMINISTRATIVE BNQ 9922-200
2016-03-22	1 ^{re} édition	Septembre 2014	Septembre 2014
2017-08-10	1 ^{re} révision : ajout à la note 1 du tableau de la section 4	Septembre 2014	Septembre 2014
2018-12-04	2 ^e révision : renouvèlement	Septembre 2014	Octobre 2017
2021-12-01	3 ^e révision : renouvèlement	Mars 2021	Mars 2021
2023-08-09	Modification de la raison sociale	Mars 2021	Mars 2021

Fiche d'information technique : FTEP-VWS-PRFM-01EV Août 2023

1. DONNÉES GÉNÉRALES

Nom de la technologie

Système d'ultrafiltration ZeeWeed® 500 (ZW-500) avec coagulation

Nom et coordonnées du fabricant

Veolia Water Technologies & Solutions Canada GP 3239, Dundas Street West Oakville (Ontario) L6M 4B2

Téléphone : 905 465-3030 Télécopieur : 905 465-3050

Personne-ressource : Doreen Benson Courriel : doreen.benson@veolia.com

Nom et coordonnées du distributeur

Brault Maxtech inc. 525, avenue Notre-Dame, 2e étage Saint-Lambert (Québec) J4P 2K6

Téléphone : 450 904-1824 Télécopieur : 514 221-4122

Personne-ressource : Nicolas Minel Courriel : nicolas.minel@braultmaxtech.com

2. DESCRIPTION DE LA TECHNOLOGIE

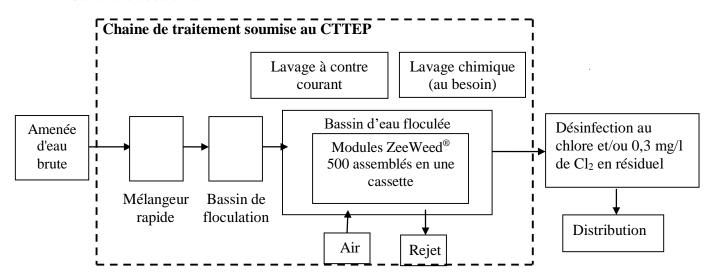
Généralités

La technologie vise le traitement par ultrafiltration avec dosage de produits chimiques d'une eau de surface pour l'élimination de la turbidité, l'abattement des microorganismes pathogènes (coliformes fécaux et totaux, virus, *Giardia* et *Cryptosporidium*) et la réduction de la matière organique (couleur et carbone organique total). Il s'agit d'une chaine de traitement membranaire impliquant la mise en place de modules de fibres creuses, assemblés en cassettes de plusieurs modules, fonctionnant sous faible pression et immergés à l'intérieur d'un bassin d'eau préalablement coagulée et floculée chimiquement.

La question des crédits d'enlèvement des virus et des parasites pour les modules ZeeWeed® 500 fait l'objet d'une fiche d'évaluation technique distincte (FTEP-SUEZ-EQFM-01EV).

Dans la filière de traitement proposée, l'eau brute tamisée est soumise à une coagulation et une floculation chimique par addition de sels métalliques. L'eau brute floculée est ensuite aspirée par le vide partiel créé à l'intérieur des fibres creuses du module ZeeWeed® 500 immergé dans le bassin d'eau floculée. L'eau ainsi traitée après le passage de l'extérieur à l'intérieur des membranes (perméat) est ensuite recueillie et emmagasinée.

Le module ZeeWeed® 500 est nettoyé automatiquement par de l'air introduit à la base du module et par rétrolavage à des fréquences régulières en utilisant le perméat. L'agitation et la turbulence créées par l'insufflation de l'air contribuent au maintien d'une surface membranaire propre en délogeant les dépôts sur les fibres, tandis qu'un rétrolavage avec de l'eau permet à la membrane de récupérer ses caractéristiques. Pour éliminer les solides accumulés, un déversement continu est effectué, ou une vidange partielle ou totale du bassin d'eau de procédé est effectuée après chaque rétrolavage, Dans


ce dernier cas, la fréquence des rétrolavages est basée sur le taux de récupération des membranes de même que sur le volume du bassin d'eau de procédé et sur le débit du système membranaire.

Les membranes peuvent recevoir des lavages d'entretien si requis. Ces lavages sont typiquement exécutés en recirculant ou en trempant dans une solution de faible concentration de chlore. Un lavage de récupération des membranes impliquerait une concentration plus élevée de chlore pour l'enlèvement de la matière organique accumulée sur les membranes tandis qu'un acide serait plutôt employé pour l'enlèvement de la matière organique.

Le traitement sera complété par une chloration pour assurer l'inactivation complète des virus et le maintien d'un résiduel à l'entrée du système de distribution.

NOTE: il incombe au concepteur de vérifier que tous les autres paramètres du « Règlement sur la qualité de l'eau potable » (RQEP) sont respectés.

Schéma d'écoulement

TECHNOLOGIE : ZeeWeed® 500 (ZW-500) AVEC COAGULATION Fiche d'information technique : FTEP-VWS-PRFM-01EV

Août 2023

3. CRITÈRES DE CONCEPTION

Prétraitement

- Type de tamis recommandé : fin;
- Taille des ouvertures : jusqu'à 1 mm;
- Nettoyage : automatique ou manuel;
- Lors de l'essai pilote : tamis avec ouvertures de 1 mm à l'eau brute prélevée des rivières Conestoga et Susquehanna en Pennsylvanie; dégrillage à l'eau brute prélevée de la rivière des Prairies à Laval.

Coagulation

- Temps de rétention: de une à dix secondes au débit maximal, avec un maximum de 30 secondes au débit minimal;
- Type d'équipement : mécanique ou statique en ligne ou mélangeur mécanique dans un bassin de coagulation;
- Produits chimiques utilisés : ceux utilisés lors des essais pilotes ou un autre coagulant équivalent.
 Le contrôle du pH demeure optionnel en fonction de l'eau à traiter.
 - Essais pilotes de trois mois à Lancaster en Pennsylvanie :
 - Dosages variant de 20 à 125 mg/l d'alun (3,4 à 21,4 mg/l exprimé en Al₂O₃) et pH maintenu entre 6,0 et 6,3 avec de l'acide sulfurique;
 - Dosages variant de 8 à 50 mg/l de PACL (0,8 à 5,3 mg/l exprimé en Al₂O₃) sans ajustement du pH.
 - Essai pilotes de quatre semaines à Laval au Québec :
 - Dosages de 11,2 mg/l de sulfate ferrique (exprimé en Fe);
 - Dosages variant de 2,4 à 4,8 mg/l d'alun (exprimé en Al);
 - Dosages variant de 4-4 à 5 mg/l de PASS-C (exprimé en Al).

Floculation

- Temps de rétention : variant de trois à dix minutes au débit maximal (Conestoga : 6-12 min, Susquehanna : 6-12 min);
- Type d'équipement : mélangeur mécanique dans un bassin de floculation ou bassin de floculation dont le mélange est assuré par insufflation d'air (pilotes Conestoga et Susquehanna);
- Produits chimiques utilisés : aucun.

Bassin d'eau floculée de procédé

- Volume du bassin lors de l'essai pilote : 700 l;
- À pleine échelle : le volume du bassin d'eau floculée de procédé dépend du nombre de modules installés; pour une cassette de 26 modules, les dimensions typiques seraient de 1 829 mm x 2 743 mm avec un niveau d'eau d'environ 2 540 mm, soit 12 800 l ou 500 l/module. Le tableau présentant les caractéristiques des modules, qui figure à la section « Configuration des modules », permet d'évaluer le volume du bassin d'eau floculée nécessaire.

Système d'aération

- Débit d'air lors de l'essai pilote : 25,5 m³/h par module en aération cyclique (10 secondes avec air, 10 à 40 secondes sans air);
- Débit d'air à pleine échelle : de 6,4 à 25,5 m³/h par module, soit intermittent ou constant, suivant le mode de fonctionnement et l'application.

Filtration sur membrane ZW-500

- Configuration des fibres :
 - Fibre creuse en mode de filtration de l'extérieur vers l'intérieur;
 - Matériel de fabrication : PVDF;
 - Diamètre intérieur : 0,8 mm;
 - Diamètre extérieur : 1,9 mm;
 - Diamètre nominal des pores : 0,04 µm;
 - Diamètre absolu des pores (seuil de coupure absolu) : 0,1 μm;
 - Gamme de pH recommandée : de 5 à 9,5.
- Caractéristiques des modules :
 - Modèle : ZW-500a, 500b, 500c et 500d;
 - Mode de filtration : frontal (dead-end);
 - Capacité du module lors de l'essai pilote : de 2,18 à 3,84 m³/h;
 - Surface totale de filtration lors de l'essai pilote : 61,2 m² (trois modules de 20,4 m²);
 - Flux de filtration testé : de 35,6 à 62,8 l/m².h;
 - Flux de filtration à 20 °C recommandé : de 47 à 91 l/m².h;
 - Ratio typique flux instantané/flux net : de 1,1 à 1,2;
 - Pression transmembranaire moyenne d'opération lors de l'essai pilote : de -6,9 à -83 kPa;
 - Pression transmembranaire moyenne d'opération : de -13,8 à -55,1 kPa;
 - Pression transmembranaire maximale d'opération : -84 kPa (vacuum de 0,83 bar).

Configuration des modules

Paramètres	Modules			
raiametres	500a	500b	500c	500d
Hauteur (en mm)	2 017	2 017	1 940	2 198
Largeur (en mm)	688	688	720	830
Profondeur (en mm)	184	184	93	56
Surface de filtration (en m²)	47,6	60,4	20,4 ou 23,2 ¹	31,6 ou 40,9 ¹
Nombre de modules par cassette	8	8	22 ou 26	32 à 64
Volume du bassin d'eau floculée nécessaire par module (en l)	1 200	1 200	500	400

¹ Il existe deux configurations possibles pour les modules 500c et 500d comprenant un nombre différent de fibres pour le même volume de module.

Lavage des membranes

- Rétrolavage à l'eau ultrafiltrée non chlorée
 - Fréquence: typiquement toutes les 15 à 60 minutes pour une durée de 15 à 60 secondes, mais la fréquence sera établie selon le taux de récupération visé, le flux de filtration en opération et le volume du bassin de procédé (qui dépend de la taille de l'installation);
 - Débit de rétrolavage lors de l'essai pilote : de 1,9 à 3,4 m³/h;
 - Flux de rétrolavage à pleine échelle : de 1,0 à 1,5 fois le flux de filtration.
- Lavage chimique d'entretien
 - Fréquence : de une fois par jour à une fois par semaine; les modules sont lavés par recirculation ou par trempage dans une solution à faible concentration en chlore (10 à 350 mg/l) pendant environ dix minutes. À la suite du lavage, la solution est déchlorée au bisulfite de sodium et neutralisée avant d'être rejetée selon les normes du Guide de conception des installations de production d'eau potable du MELCC.
- Lavage chimique de récupération
 - Fréquence: une fois par mois (normalement); les membranes seront lavées par trempage dans une solution de chlore concentrée (200 à 500 mg/l) ou d'acide citrique (pH de 2,2) pour une durée d'environ six heures. À la suite du lavage, la solution est déchlorée au bisulfite de sodium ou neutralisée avant d'être rejetée selon les indications du *Guide de conception des installations de production d'eau potable* du MELCC.

Normes à atteindre relativement à la turbidité après les membranes :

- 0,2 UTN 100 % du temps (selon le RQEP);
- 0,1 UTN 95 % du temps (selon le RQEP).
- Performance atteinte lors de l'essai pilote à Lancaster :
 - Turbidité < 0,085 UTN 95 % du temps;
 - Turbidité < 0,300 UTN 100 % du temps.
- Performance atteinte lors de l'essai pilote à Portsmouth :
 - Turbidité < 0,035 UTN 95 % du temps;
 - Turbidité < 0,300 UTN 100 % du temps.
- Performance atteinte lors de l'essai pilote à Laval :
 - Turbidité < 0,04 UTN 95 % du temps;
 - Turbidité < 0,09 UTN 100 % du temps.

Formation de sous-produits de chloration avec le perméat

- Les résultats des essais de SDS-THM et de SDS-AHA réalisés selon la *Procédure de validation* de la performance des technologies de traitement en eau potable doivent permettre de respecter les valeurs respectives de 80 μg/l et de 60 μg/l prévues dans le RQEP.
- Les valeurs moyennes de la simulation de la formation de trihalométhanes (SDS-THM) en réseau et de la simulation de la formation d'acides haloacétiques (SDS-AHA) en réseau du perméat obtenue lors de l'essai pilote à Lancaster sont respectivement de 40,7 μg/l et de 37,1 μg/l et les SDS-THM maximaux obtenu à Portsmouth sont de 51 μg/l.

Fiche d'information technique : FTEP-VWS-PRFM-01EV

Eaux résiduaires de rejet

- Taux de récupération du procédé :
 - Les membranes opèrent à un taux de récupération variant de 90 à 97 %.
- Caractéristiques des eaux de rejet :
 - Le volume journalier des eaux de rejet représente environ de 3 à 10 % du volume d'eau brute à traiter. L'évacuation des eaux de rejet se fait par déversement continu, ou par vidange partielle ou complète du bassin d'eau floculée selon une fréquence déterminée;
 - Le volume d'eau rejeté pour un lavage d'entretien au chlore représente jusqu'à deux fois le volume du bassin d'eau floculée de procédé. Le lavage comprend une vidange du bassin d'eau floculée et peut inclure une vidange à volume égal des eaux déchlorées ou neutralisées;
 - Le volume d'eau rejeté pour un lavage de récupération représente jusqu'à deux fois le volume du bassin d'eau floculée de procédé. Le lavage comprend généralement une vidange du bassin d'eau floculée et une vidange à volume égal des eaux déchlorées et/ou neutralisées;
 - Les matières en suspension (MES) dans le rejet peuvent dépasser la limite permise d'un rejet sans traitement (20 mg/l) dépendant du niveau de MES dans l'eau brute et de la quantité de coagulant ajoutée.

Les caractéristiques des eaux de rejet obtenues pour déconcentrer le système, soit par vidange ou par déversement continu, dépendent de la quantité de MES à l'eau brute, de la dose de coagulant ajoutée et du taux de récupération. Par exemple, à un taux de récupération de 95 %, les MES dans le rejet seront de 20 fois le total des matières en suspension à l'eau floculée. Le volume des eaux de rejet peut être calculé selon le taux de récupération et la capacité de l'usine.

Pour les eaux de procédé ne pouvant être rejetées directement dans un cours d'eau, un traitement devra être prévu selon les recommandations du *Guide de conception des installations de production d'eau potable* du MELCC.

4. NIVEAU DE DÉVELOPPEMENT DES TECHNOLOGIES EN EAU POTABLE

Le CTTEP a évalué le niveau de développement de la technologie en fonction de la *Procédure de validation de la performance des technologies de traitement en eau potable.* Le CTTEP juge que les données obtenues lors des essais pilotes effectués dans la ville de Lancaster en Pennsylvanie, sur l'eau des rivières Conestoga et Susquehanna, à Portsmouth au New Hampshire ainsi qu'à Laval au Québec sur l'eau de la rivière des Prairies sont suffisantes pour répondre aux critères permettant l'implantation d'un projet de validation à l'échelle réelle de la technologie ZeeWeed® 500 avec coagulation. L'implantation d'un projet de validation reste toutefois limitée à toutes les eaux brutes dont les caractéristiques correspondent aux paramètres critiques suivants :

Paramètres critiques	Eau brute	Autres paramètres mesurés	Eau brute
Turbidité (en UTN) (basée sur 95 % des échantillons)	≤ 34,4	Turbidité (en UTN) (<i>maximum</i>)	1 000
COT (en mg/l) (basé sur 90 % des échantillons)	>7,0 (1)	COT (en mg/l) (<i>maximum</i>)	9,13
		Coliformes totaux (en UFC/100 ml) (maximum)	16 000
		E. Coli (en UFC/100 ml) (maximum)	2 400
		Couleur (en UCV) (basée sur 90 % des échantillons)	76
		Température (en °C)	1,0 à 33,0
		рН	6,3 à 8,9
		Alcalinité totale (en mg/l CaCO ₃)	22 à 199
		Absorbance UV (en cm ⁻¹)	0,226 à 0,378
		SUVA (en l/mg-m)	2,48 à 4,14
		Fer (en mg/l)	0,0 à 2,1
		Manganèse (en mg/l)	0,01 à 0,452

⁽¹⁾ Tout projet à l'eau brute comportant une valeur de carbone organique totale (COT) supérieure à cette valeur nécessite une confirmation par des essais de traitabilité de la performance de la chaine de traitement relative à la formation de sous-produits de la désinfection au chlore (THM et AHA) ou une démonstration par le concepteur que la formation de sous-produits de la désinfection au chlore (THM et AHA) ne représente pas un problème pour ce projet (données historiques ou simulations disponibles, utilisation de chloramines, etc.).

Toutefois, les conditions de COT à l'eau brute ne sont pas limitatives aux valeurs inscrites dans la fiche technique lorsque des essais de floculation (jars-tests) ont été réalisés sur la source d'eau à l'étude et qu'ils démontrent que les conditions de coagulation à appliquer et les essais de simulation de sous-produits de la chloration (SDS-THM et SDS-AHA) permettent de respecter les normes applicables.

Les paramètres ci-dessus représentent la qualité de l'eau brute lors des suivis réalisés, mais ne tiennent pas compte des limites de la technologie. Pour des valeurs supérieures aux paramètres critiques mentionnés dans le tableau ci-dessus, le CTTEP serait prêt à reconnaître les données d'un nouvel essai pilote. Celui-ci devrait être conduit sur une période d'au moins deux semaines, inclure au minimum deux lavages chimiques selon le protocole proposé par le CTTEP et présenter des critères de conception identiques à ceux contenus dans la présente fiche technique. Le démarrage du nouvel essai pilote devrait être effectué à l'aide de tous les équipements fonctionnant adéquatement avant que ne commencent les essais requis.

Le nombre d'installations en validation à l'échelle réelle est limité à cinq.

NOTE: Le niveau de développement peut faire l'objet d'une révision suivant l'obtention d'autres résultats.